
Lecture 14:
Command Objects &
Support for Undo

05-431/631 Software Structures for User Interfaces (SSUI)
Fall, 2020

© 2021 - Brad Myers 1

Logistics
 Midterm exam grades and comments posted

 Please check it
 Self-reported time to finish: average = 3.5 hours; min=2, max=6
 Exam grade average = 90, min=74.5; max=96.5
 Go over answers

 Midterm course grades on SIO

 Please take the midterm survey by
https://www.surveymonkey.com/r/SSUI2021midterm

 Homework 4 due on Thursday
 This lecture is how to do HW 5

© 2021 - Brad Myers 2

https://www.surveymonkey.com/r/SSUI2021midterm

Early Undo

© 2021 - Brad Myers 3

IBM Correcting
Selectric II
1973

Invented 1951 by
Bette Nesmith Graham

Computer “Undo”
 Undo is reversing a previous operation so that it no longer is

in effect
 Usually ^Z
 For web apps, sometimes the Back button in a browser

 Cancel is stopping an operation while it is in progress
 Often ESC key or the “Cancel” button in a dialog box

© 2021 - Brad Myers 4

Single Level Undo

 Just toggles the
latest item on the
list

© 2021 - Brad Myers 5

A C DB

create
green rect

resize
rect

make
blue

rotate
rect

A C DB

undo

A C DB

undo

Linear Undo
 Keep a list of all operations
 Undo (^Z) goes

backwards, repeatedly
 Redo (^-Shift Z or ^Y) goes

forwards after an undo
 Undo the undo

 New operations remove
anything undone – it is lost
forever

© 2021 - Brad Myers 6

A C DB

undo

X
undo

X

A C DB

undo

X

A C DB

redo

A C DB

undo

X

create
green rect

resize
rect

make
blue

rotate
rect

redo

A C DB

undo

X
E

add
shadow

1)

2)

3)

4)

5) X

Repeat
 Does the previous

operation again on
the current selection

 E.g., rotate something else by the same amount
 Really useful

 Goes on the undo stack just like normal operations
 Typically, uses same

shortcut key as Redo
 But might want to

repeat the previous
command after an undo

 Office changes icon
 Repeat is often not available

© 2021 - Brad Myers 7

A C DB

create
green rect

resize
rect

make
blue

rotate
rect

A C DB E
repeat

A C DB

create
green rect

resize
rect

make
blue

rotate
rect

A C DB

undo

ERepeat
make blue

Complications: Operations not put on
Undo Stack
 Scrolling

 Might be useful to have a “go back”, like with hyperlinks
 See research later

 Changing the selection
 not undoable, doesn’t change undo stack
 My Topaz system made this available for undo – see later

 Changing the value of controls, if doesn’t affect any objects
 Changing the color of the next-drawn object

 Copy (as in Cut-Copy-Paste)
 Clipboard changes are not affected by undo

 Lots of clever strategies take advantage of this
 Also not possible since clipboard is global and undo is per-application

 Saving to file is not undoable
 Old: blocks off all previous operations
 Current: not put on undo stack so can undo past saves

© 2021 - Brad Myers 8

Complications: operations that are
collected
 Multiple characters typed grouped into one undo
 Similarly, multiple backspaces

 Used of arrow keys to “nudge” graphics often grouped into 1
operation

 Or, one operation causes multiple entries on undo stack: teh_
 the_ (auto-correct; text)

© 2021 - Brad Myers 9

Undo in Various Programs
 See details for how Linear Undo works in PowerPoint
 Good reference for expected behaviors
 Note how selection changes as a result of undo

 Many programs have “unusual” designs for undo
 Outlook – single level; undo delete – not selected (so hard to find)
 Emacs editor – weird “switch directions” undo – forward/backwards
 PhotoShop – 2 or 3 different undo mechanisms

© 2021 - Brad Myers 10

Adobe PhotoShop
 History pane displays previous operations
 ^Z – one-level undo that toggles undo/redo – until V2019
 Also Shift-^Z, Alt-^Z - linear undo forwards and backwards
 Redo list erased on new

operations
 “History brush”
 Select point in past and

brush area – returns to
the way it was in the past

 Can’t “skip” operations
 Is selective by region, but

not by time

© 2021 - Brad Myers 11

Undo implementations
 Need a central list of operations
 Where to store the old values?
 With objects that are modified

 E.g., a rectangle keeps track of all its former locations
 Called “Memento Pattern” (Wikipedia)
 But limited in kinds of editors – doesn’t work for text, paint

 In a global list
 But what to store for each operation?

 Using the Command Object pattern
 Store in the command object itself
 Then it stays with the operation
 No confusion about which parameters for which operation

© 2021 - Brad Myers 12

Command Object Pattern
 Wikipedia: “An object is used to encapsulate all

information needed to perform an action or
trigger an event at a later time. This information
includes the method name, the object that
owns the method and values for the method
parameters.”

 Was in original “Design Patterns” book (1994)
 Better separation between action and widgets
 Clearer place to store information needed for

undo
© 2021 - Brad Myers 13

https://en.wikipedia.org/wiki/Command_pattern

HW 5 design for Command Objects
 Abstract class that all operations extend:
class CommandObject

 Methods for Execute, Undo, Redo etc., that specific
commands override

 Variables for saved values in the command object itself

© 2021 - Brad Myers 14

Sub-classes of command object
 Create a subclass of CommandObject for each kind of command

 Also: CreateObjectCommandObject,
ChangeBorderColorCommandObject,
ChangeBorderWidthCommandObject, etc.

© 2021 - Brad Myers 15

Standard Process for using a Command
Object
1. When the user clicks menu item (e.g., to change color), or

starts an action (like create object), allocate a new command
object of the correct type
curCmd = new ChangeFillColorCommandObject(undohdlr);

2. Call that object’s execute() method, which will:
a) Save all the information needed to undo/redo/repeat the action later
b) Perform the action
c) Put this command object on the undo list

 Each kind of object will have a different execute method
 What does ChangeFillColorCommandObject.execute() need to store?

© 2021 - Brad Myers 16

Provided Example:
ChangeFillColorCommandObject

 Command object that is used when
change the fill color

 What to store?

© 2021 - Brad Myers 17

Example:
 SVG Change fill color: C
 Target object = rect1
 Old value = “green”
 New value = “blue”

class ChangeFillColorCommandObject extends CommandObject

© 2021 - Brad Myers 18

A CB

create
green rect

resize
rect

make
blue

undo

rect1

Values
 newValue and oldValue often need

to be an object with many values
 What to store for create in HW 3?
 All values used:

 Type (line/rect/ellipse)
 Coordinates for create
 Border color
 Border width
 Fill color

 For SVG, can store the created
object, but not for canvas

 Why can’t you just get
values from the palette?

© 2021 - Brad Myers 19

Command Object Methods
 Execute / Do
 The actual operation of the command, like to change the fill color
1. Gets parameters from the global variables and saves them in the Command

Object itself
2. Execute the command
3. Save the command object on the undo stack

 Real operation will be a little more complicated
 For ChangeFillColorCommandObject:
execute() {

if (selectedObj !== null) { // global variable for selected object
this.targetObject = selectedObj; // save the object
this.oldValue = selectedObj.fillColor; //get current color
this.newValue = fillColorWidget.currentColor; //new color
selectedObj.fillColor = this.newValue; //actually perform the change
if (addToUndoStack)
this.undoHandler.registerExecution({...this}); //load me onto undolist

// which will also potentially remove pending undone commands
}

}
© 2021 - Brad Myers 20

Other Command Object Methods
 canExecute() – whether the execute method will work now
 For change color – just if there is an object selected

 canRepeat() – whether repeat will work now
 For change color – just if there is an object selected and a previous

color
canExecute() {

return selectedObj !== null;
}
canRepeat() {

return (selectedObj !== null) && this.newValue;
}

© 2021 - Brad Myers 21

Undo & Redo
 Undo method – make the object have its old value
undo() {

this.targetObject.fillColor = this.oldValue;
// make sure this object is selected, which will
// also fix the palette to show this object's color
becomeSelected(this.targetObject);
** now fix the undo stack **

}

 Redo = undo the undo
redo() {

this.targetObject.fillColor = this.newValue;
becomeSelected(this.targetObject);
** now fix the undo stack **

}

© 2021 - Brad Myers 22

A CB

create
green rect

resize
rect

make
blue

undo

rect1

Repeat
 Apply same color to the currently selected object
 Different object, so might have a different old color

 Remember, this operation is added to the undo stack
 Note: not the palette’s current color – use saved newColor
 Need to allocate a new command object for repeat
repeat() {

if (selectedObj !== null) {
this.targetObject = selectedObj; // get new selected obj
this.oldValue = selectedObj.fillColor; //obj's current color
// no change to newValue – comes from operation that was copied
selectedObj.fillColor = this.newValue; //actually change
if (addToUndoStack)

this.undoHandler.registerExecution({...this});
}

© 2021 - Brad Myers 23

C
Repeat

make blue E

Change Color Control
 When the user clicks on a color, that is different from the

current object’s color, then:
 Create a new ChangeFillColorCommandObject
 Call its execute method

© 2021 - Brad Myers 24

Implementing Undo for Canvas
 How can “undraw” an operation for the

Canvas?
 Note: not part of homework 5

 Just have to save a copy of the canvas
before each operation
 Redo can perform the operation again – do not

need to store both before and after images
 Optimization – save only the parts of the screen

that changed
 Why not redo everything from the

beginning each time?
 Too slow in realistic situations

© 2021 - Brad Myers
25

undo

A C DB

create
green rect

create
blue rect

create
black circle

create
yellow circle

Linear Undo Handler

 Has to keep the undo stack, and keep track of which
operation should be undone / redone / repeat

 Methods for
 register a command object (after executed)
 doUndo – call this when user hits the undo menu item
 Undo Available? – controls greying out the undo menu item
 Just checks if there is a command on the undo stack

 doRedo, doRepeat, redo/repeat available?

© 2021 - Brad Myers 26

Advanced: Selective Undo
 Reach back into history and

select which operation to undo
 “Script model”
 As if that operation was just

removed
 Often unclear what this

means!

© 2021 - Brad Myers 27

X

CXA DB

A C DB

create
green rect

resize
rect

make
blue

rotate
rect

1)

2a)

2b)

1x)

undo

A C DBX ?
create

green rect
resize
rect

make
blue

make
red

CA DB
undo

?

Timeline view in Fusion 360
 Fusion 360 (a CAD software) from AutoDesk

https://www.autodesk.com/products/fusion-360/blog/master-the-timeline-browser-preferences/

 Provides graphical timeline for undo
 Complete collection of every change made to your design
 Selective undo (“suppress”) also affects later operations that

depend on it

© 2021 - Brad Myers 28

https://www.autodesk.com/products/fusion-360/blog/master-the-timeline-browser-preferences/

Kurlander’s Graphics Histories
 Kurlander, D. and Feiner, S. Editable Graphical Histories. Proc. 1988 IEEE Workshop on Visual

Languages. (Pittsburgh, Oct. 10-12, 1988). 127-
134. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=18020&isnumber=662

 Video (2:42)
 Before and after scenes for each operation
 Can undo back to any point
 Can then change things and redo the operations afterwards
 Basically, the “script” model of undo/redo

© 2021 - Brad Myers 29

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=18020&isnumber=662
http://www.kurlander.net/DJ/Videos/EditableGraphicalHistoriesVideo.shtml

Aquamarine
 Brad A. Myers, Ashley Lai, Tam Minh Le, YoungSeok Yoon, Andrew Faulring, Joel Brandt, "Selective Undo

Support for Painting Applications", Proceedings CHI'2015: Human Factors in Computing Systems, Seoul, Korea,
April 18-23, 2015. pp. 4227-4236. http://dl.acm.org/citation.cfm?doid=2702123.2702543

 Allowing Quick Undoing of Any Marks And Repairs to Improve
Novel Editing

 Selective undo of past operations in a paint
program using the script model
 Can’t use inverse model in paint because can’t

change affected pixels in current context
 No dependencies among objects as there are in

a drawing program
 Issue: spatial dependencies:
 Copy and paste
 Flood fill (paint bucket)

© 2021 - Brad Myers 30

Video: 4:35
Short Video: 0:30

http://dl.acm.org/citation.cfm?doid=2702123.2702543
https://youtu.be/_EmbGg-b6Mo
https://www.youtube.com/watch?v=qUHnZudq7ws&list=PL3856C8FlIWfr_tX8CMUhOJvl34ylClgb&index=2

Selective Undo by Region

 Selective Undo by Region
 Regular linear undo but only for operations in the region
 Avoids the ambiguities
 Available in PhotoShop, our research system for code editing

in Azurite:
YoungSeok Yoon and Brad A. Myers. “Supporting Selective Undo in a Code Editor,” 37th
International Conference on Software Engineering, ICSE 2015. Florence, Italy, May 16-
24, 2015. 223-233 (volume 1). pdf and video.

© 2021 - Brad Myers 31

http://www.cs.cmu.edu/%7Enatprog/papers/ICSE15-Azurite-v12-CameraReady.pdf
https://www.youtube.com/watch?v=blbIBdlUGIc

Direct Selective Undo or Inverse Model
 Gina:

Thomas Berlage. “A Selective Undo Mechanism for
Graphical User Interfaces Based on Command Objects,”
ACM Transactions on Computer Human Interaction. Sep,
1994. vol. 1, no. 3. pp. 269-294.

 Perform inverse of selected
operation

 Put at end of undo stack
 Almost anything can be

undone
 Meaning determined by

what is “useful” and
appropriate

© 2021 - Brad Myers 33

CA DB

A C DB

create
green rect

resize
rect

make
blue

rotate
rect

1)

2a)

2b)

1x)

undo

A C DB

create
green rect

resize
rect

make
blue

make
red

CA D’B
undo

C’

undo make
blue = green

A’

undo create
= deleteundo

C’

undo make
blue = green

34

Direct Selective Undo Implementation
 Implementing direct selective undo not much harder than regular

undo:
 Allocates a new command object and adds to end of history list
 Semantics is based on what the user would want
 Undo the operation in a new context means to set the object back to its

previous value
 Selective Undo is enabled if object is still available
 Undo of create is delete

 Redo the operation means to set the value of the object again;
 redo of create = a new object

 Repeat = redo on new object
© 2021 - Brad Myers

35

Scripting = “Topaz”
 Brad A. Myers. "Scripting Graphical Applications by Demonstration," Proceedings

CHI'98: Human Factors in Computing Systems. Los Angeles, CA, April 18-23, 1998.
pp. 534-541. ACM DL, or local pdf, and YouTube video or local video (3:09).
(Topaz)

 Select set of commands and specify that in a program
 Uses selective repeat
 Can parameterize actions
 Moving which object selected is recorded
 Forwards, backwards, left, right, up, down,

in, out
 Search for object of a particular type or value

 Little or no change to application if it
supports Selective Repeat

© 2021 - Brad Myers

http://dl.acm.org/citation.cfm?id=274716
http://www.cs.cmu.edu/%7Eamulet/papers/commandsbydemo-p534-myers.pdf
http://youtu.be/RtHgofs4p3U
http://www.cs.cmu.edu/%7Eamulet/videos/Topaz.mp4

36

Pictures for Scripting:
Object Search

© 2021 - Brad Myers

37

Pictures for Scripting:
Generalize Position / Size

© 2021 - Brad Myers

38

Pictures for Scripting: Result

© 2021 - Brad Myers

Multi-User Undo
 Required for Google Docs
 Let’s try: https://tinyurl.com/SSUIUndo

 if multiple users have overlapping selection regions and
one user does Undo – what should be done?
1.Undo the globally last operation
2.Undo that user’s last operation
3.Undo the last operation in the region of the user’s cursor

 Google Doc is somewhat random
 Old research on correct ways to handle this
 Summary: it’s complicated for text, easier for graphics

© 2021 - Brad Myers 39

https://tinyurl.com/SSUIUndo
http://dx.doi.org/10.1016/0953-5438(92)90021-7
https://link.springer.com/chapter/10.1007%2F978-94-011-0349-7_15

40

Using Undo History for “Why” Help
 Crystal: Clarifications Regarding Your Software using a

Toolkit, Architecture and Language
 Brad Myers, David A. Weitzman, A.J. Ko, and Duen Horng Chau, "Answering

Why and Why Not Questions in User Interfaces," Proceedings CHI'2006:
Human Factors in Computing Systems. Montreal, Canada, April 22-27, 2006.
pp. 397-406. pdf. See also YouTube or local video

 Help answer why things happen in regular desktop
applications

 Lots of complexity in powerful features that people
generally like

 Ask “Why” about what recently happened

© 2021 - Brad Myers

http://www.cs.cmu.edu/%7ENatProg/papers/Myers2006Crystal.pdf
http://youtu.be/hC3n6ndHd8M
http://www.cs.cmu.edu/%7Enatprog/movies/Crystal.mov

41

Crystal
 Or, ask Why about a location by clicking on objects,

or whitespace

 Also can explain
complexities like
style inheritance,
etc.

© 2021 - Brad Myers

42

Crystal Implementation Overview
 (Full details in the paper)
 Only a little more work than supporting Undo
 “Command object” architecture for actions
 Command objects stored on a list for undo

 Programmer adds back pointers from objects to the
commands that changed them

 Add dependency information for mode
variables

 Add special commands for actions not executed
 Add extra invisible objects for whitespace and deletions

© 2021 - Brad Myers

43

Crystal Implementation, cont.
 Crystal framework then builds Why menus and answers

automatically
 Crystal finds:
 Objects under the mouse
 Commands that affected those objects
 User interface controls involved in those commands

 Programmer can annotate some commands to not include in
menus
 E.g., regular typing
 Similar to heuristics for granularity of Undo

© 2021 - Brad Myers

	Lecture 14:�Command Objects &�Support for Undo
	Logistics
	Early Undo
	Computer “Undo”
	Single Level Undo
	Linear Undo
	Repeat
	Complications: Operations not put on Undo Stack
	Complications: operations that are collected
	Undo in Various Programs
	Adobe PhotoShop
	Undo implementations
	Command Object Pattern
	HW 5 design for Command Objects
	Sub-classes of command object
	Standard Process for using a Command Object
	Provided Example: ChangeFillColorCommandObject
	Example:
	Values
	Command Object Methods
	Other Command Object Methods
	Undo & Redo
	Repeat
	Change Color Control
	Implementing Undo for Canvas
	Linear Undo Handler
	Advanced: Selective Undo
	Timeline view in Fusion 360
	Kurlander’s Graphics Histories
	Aquamarine
	Selective Undo by Region
	Region Conflicts: Flood Fill
	Direct Selective Undo or Inverse Model
	Direct Selective Undo Implementation
	Scripting = “Topaz”
	Pictures for Scripting:�Object Search
	Pictures for Scripting:�Generalize Position / Size
	Pictures for Scripting: Result
	Multi-User Undo
	Using Undo History for “Why” Help
	Crystal
	Crystal Implementation Overview
	Crystal Implementation, cont.

